\(\int (a+a \cos (c+d x)) (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [231]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 32 \[ \int (a+a \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=a C x+\frac {a (B+C) \text {arctanh}(\sin (c+d x))}{d}+\frac {a B \tan (c+d x)}{d} \]

[Out]

a*C*x+a*(B+C)*arctanh(sin(d*x+c))/d+a*B*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {3108, 3047, 3100, 2814, 3855} \[ \int (a+a \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {a (B+C) \text {arctanh}(\sin (c+d x))}{d}+\frac {a B \tan (c+d x)}{d}+a C x \]

[In]

Int[(a + a*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

a*C*x + (a*(B + C)*ArcTanh[Sin[c + d*x]])/d + (a*B*Tan[c + d*x])/d

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3108

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \int (a+a \cos (c+d x)) (B+C \cos (c+d x)) \sec ^2(c+d x) \, dx \\ & = \int \left (a B+(a B+a C) \cos (c+d x)+a C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx \\ & = \frac {a B \tan (c+d x)}{d}+\int (a (B+C)+a C \cos (c+d x)) \sec (c+d x) \, dx \\ & = a C x+\frac {a B \tan (c+d x)}{d}+(a (B+C)) \int \sec (c+d x) \, dx \\ & = a C x+\frac {a (B+C) \text {arctanh}(\sin (c+d x))}{d}+\frac {a B \tan (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.34 \[ \int (a+a \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=a C x+\frac {a B \text {arctanh}(\sin (c+d x))}{d}+\frac {a C \text {arctanh}(\sin (c+d x))}{d}+\frac {a B \tan (c+d x)}{d} \]

[In]

Integrate[(a + a*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

a*C*x + (a*B*ArcTanh[Sin[c + d*x]])/d + (a*C*ArcTanh[Sin[c + d*x]])/d + (a*B*Tan[c + d*x])/d

Maple [A] (verified)

Time = 4.50 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.56

method result size
parts \(\frac {\left (B a +a C \right ) \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {a B \tan \left (d x +c \right )}{d}+\frac {a C \left (d x +c \right )}{d}\) \(50\)
derivativedivides \(\frac {a C \left (d x +c \right )+B a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B a \tan \left (d x +c \right )}{d}\) \(57\)
default \(\frac {a C \left (d x +c \right )+B a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B a \tan \left (d x +c \right )}{d}\) \(57\)
parallelrisch \(-\frac {\left (\left (B +C \right ) \cos \left (d x +c \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\left (B +C \right ) \cos \left (d x +c \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-d x C \cos \left (d x +c \right )-B \sin \left (d x +c \right )\right ) a}{d \cos \left (d x +c \right )}\) \(81\)
risch \(a C x +\frac {2 i B a}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}+\frac {B a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{d}-\frac {B a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{d}\) \(105\)
norman \(\frac {a C x +a C x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a C x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a C x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {2 B a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {4 B a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {4 B a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 B a \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-2 a C x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 a C x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {a \left (B +C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}-\frac {a \left (B +C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(226\)

[In]

int((a+cos(d*x+c)*a)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

(B*a+C*a)/d*ln(sec(d*x+c)+tan(d*x+c))+a*B*tan(d*x+c)/d+a*C/d*(d*x+c)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 79 vs. \(2 (32) = 64\).

Time = 0.28 (sec) , antiderivative size = 79, normalized size of antiderivative = 2.47 \[ \int (a+a \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {2 \, C a d x \cos \left (d x + c\right ) + {\left (B + C\right )} a \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (B + C\right )} a \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, B a \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )} \]

[In]

integrate((a+a*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/2*(2*C*a*d*x*cos(d*x + c) + (B + C)*a*cos(d*x + c)*log(sin(d*x + c) + 1) - (B + C)*a*cos(d*x + c)*log(-sin(d
*x + c) + 1) + 2*B*a*sin(d*x + c))/(d*cos(d*x + c))

Sympy [F]

\[ \int (a+a \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=a \left (\int B \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \cos ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int C \cos ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int C \cos ^{3}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**3,x)

[Out]

a*(Integral(B*cos(c + d*x)*sec(c + d*x)**3, x) + Integral(B*cos(c + d*x)**2*sec(c + d*x)**3, x) + Integral(C*c
os(c + d*x)**2*sec(c + d*x)**3, x) + Integral(C*cos(c + d*x)**3*sec(c + d*x)**3, x))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 73 vs. \(2 (32) = 64\).

Time = 0.21 (sec) , antiderivative size = 73, normalized size of antiderivative = 2.28 \[ \int (a+a \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {2 \, {\left (d x + c\right )} C a + B a {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + C a {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, B a \tan \left (d x + c\right )}{2 \, d} \]

[In]

integrate((a+a*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

1/2*(2*(d*x + c)*C*a + B*a*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + C*a*(log(sin(d*x + c) + 1) - log(
sin(d*x + c) - 1)) + 2*B*a*tan(d*x + c))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 84 vs. \(2 (32) = 64\).

Time = 0.33 (sec) , antiderivative size = 84, normalized size of antiderivative = 2.62 \[ \int (a+a \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {{\left (d x + c\right )} C a + {\left (B a + C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (B a + C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1}}{d} \]

[In]

integrate((a+a*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="giac")

[Out]

((d*x + c)*C*a + (B*a + C*a)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - (B*a + C*a)*log(abs(tan(1/2*d*x + 1/2*c) - 1
)) - 2*B*a*tan(1/2*d*x + 1/2*c)/(tan(1/2*d*x + 1/2*c)^2 - 1))/d

Mupad [B] (verification not implemented)

Time = 1.52 (sec) , antiderivative size = 100, normalized size of antiderivative = 3.12 \[ \int (a+a \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {B\,a\,\mathrm {tan}\left (c+d\,x\right )}{d}+\frac {2\,B\,a\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,C\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,C\,a\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d} \]

[In]

int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + a*cos(c + d*x)))/cos(c + d*x)^3,x)

[Out]

(B*a*tan(c + d*x))/d + (2*B*a*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (2*C*a*atan(sin(c/2 + (d*x)/2)
/cos(c/2 + (d*x)/2)))/d + (2*C*a*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d